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Abstract 

Performance in IT systems is critical to ensuring that systems meet user needs and expectations. In heterogeneous computing 

systems (HCS), which consist of processors with varying capabilities, dynamic adaptation plays a vital role in maintaining high 

performance. Dynamic adaptation enables systems to adjust task allocation and resource usage in real-time to respond to changes in 

workloads, resource availability, and system conditions. Task scheduling is a key aspect of achieving dynamic adaptation and remains 

a challenging NP-hard problem in HCS. Efficient scheduling requires optimizing competing objectives, such as minimizing makespan 

and maximizing processor utilization, to ensure that resources are used effectively. In this work, we propose DYnamic Task Allocation 

using dynamic programminG (DyTAg), a task scheduling algorithm based on dynamic programming, designed to support dynamic 

adaptation in HCS. Dynamic programming is particularly suited to this context as it breaks the scheduling problem into smaller, 

manageable subproblems and solves them incrementally, enabling efficient real-time adjustments. DyTAg leverages dynamic 

programming to minimize makespan while maximizing resource utilization, ensuring that tasks are allocated optimally even in complex, 

heterogeneous environments. To evaluate its performance, DyTAg is compared against established algorithms, including Min-Min, Max-

Min, and Quality of Service Guided Min-Min, using various task sets and processor configurations. The results demonstrate that DyTAg 

achieves superior performance, particularly in scenarios involving independent tasks and small task sets, showcasing its potential to 

enhance dynamic adaptation and optimize performance in heterogeneous computing systems. 
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1. Introduction 

In recent years, the field of computer science has 

experienced rapid progress in both hardware and 

software development, giving rise to innovative 

technologies that have greatly enhanced efficiency and 

usability within the Information Technology sector. In 

particular, innovations like multi-core processors, multi-

processor systems, and distributed computing have 

revolutionized heterogeneous computing environments. 

A major challenge in distributed systems is 

optimizing critical performance metrics, including 

makespan, resource utilization, latency, and throughput. 

Conventional scheduling algorithms frequently fall short 

when confronted with the complexities of heterogeneity 

and dynamic environments, such as varying workloads 

or node failures, making it difficult for them to sustain 

efficiency and scalability in practical applications. 

Dynamic adaptation, which enables systems to 

reassign tasks and modify configurations in response to 

changing conditions, plays a crucial role in improving 

the performance of distributed systems. Achieving this, 

however, demands sophisticated algorithms capable of 

balancing workloads, adhering to task dependencies, and 

optimizing resource allocation in real-time. 

However, while these advancements provide 

powerful hardware platforms that greatly enhance 

system performance, achieving high parallelism in HCS 
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requires effective management on the software side as 

well. Task scheduling in HCS, unfortunately, is an NP-

complete problem [1, 2], meaning that finding an optimal 

scheduling solution is computationally intractable as the 

problem size grows. Different scheduling approaches 

yield varying execution times for the same set of tasks in 

an HCS, highlighting the impact of scheduling 

techniques on system performance.  

The goal of task scheduling in HCS is to allocate 

tasks to processors in a way that optimizes performance 

in terms of Quality of Service (QoS) and resource 

utilization. However, as demonstrated in [3], it is often 

impossible to assign all priority tasks to the most 

efficient processor while also meeting task precedence 

constraints and minimizing the overall schedule length 

(makespan).  

Consequently, numerous scheduling algorithms 

have been developed, each tailored to meet specific 

objectives [4, 5]. For instance, the authors in [6] focus on 

minimizing makespan, while Li et al. [7] propose an 

algorithm for scheduling preemptible tasks to optimize 

computational resources in Infrastructure-as-a-Service 

(IaaS) cloud systems.  

2. Background Materials 

Performance is critical for ensuring that a system 

can handle increasing amounts of data, traffic, or users 

without degrading performance, because of the strong 

relation between performances in IT systems and 

scheduling.  

To achieve minimal makespan, the authors in [8] 

proposed a method for assigning tasks to processors 

based on the minimum execution cost of each task across 

different processors. However, in most cases, this 

approach resulted in an increased makespan, leading to 

poor QoS To address this issue, researchers such as 

Ezzatti et al. [3, 9, 10] introduced an enhanced 

implementation of the Min-Min heuristic that 

incorporates QoS constraints. 

On the other hand, the authors in [11] adapted a 

distributed algorithm in cloud systems and proposed a 

workflow scheduling algorithm which considers 

dynamic priority of the tasks. This approach undergoes a 

process of min–max normalisation [12] While the focus 

of our research is essentially optimization, Stützle et al. 

[13] introduced the MAX–MIN Ant System (MMAS), 

an Ant Colony Optimization algorithm that models ants 

as simple agents progressively building candidate 

solutions. This approach is designed to address NP-hard 

static combinatorial optimization problems effectively. 

In this paper, we propose a dynamic adaptation 

approach for a task scheduling algorithm in 

heterogeneous computing environments using dynamic 

programming. Our approach combines optimization of 

node resource utilization with QoS considerations. 

2.1. Scheduling Problem Context 

First of all, we start by introducing the problem's 

context in HCS, then its corresponding model according 

to scheduling criteria, namely processors' computing 

capacities, the total run time and system resource 

utilisation.  

The scheduling system is represented in [20] by the 

quadruple 𝑆 =  (𝑇, 𝐶, 𝑅, 𝑃) where 𝑇 = {𝑡1, . . . 𝑡𝑛} 

denotes the set of tasks to be scheduled, 𝐶 =  {𝑐1, . . . 𝑐}  

the set of tasks' execution costs, 𝑅 =  {𝑟1, . . . 𝑟𝑛}  

corresponds to the task ranks, 𝑃 =  {𝑝1, . . . 𝑝𝑛}  set of 

heterogeneous processors. 

Numerous methods in the literature have tackled 

related problem scenarios, each offering unique 

advantages and facing specific limitations. 

2.2. Literature Approaches 

Min-min heuristic uses Minimum Completion Time 

(MCT) as a metric, the heuristic uses as inputs the set T 

of all unmapped tasks. It has two phases. In the first 

phase, the set of minimum expected completion time M 

is set up from T (For each task 𝑡𝑖 determine its minimum 

completion time over all processors 𝑝𝑗 in P) where: 

𝑀 =  {𝑀𝑖𝑛(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑡𝑖 , 𝑝𝑗))} 𝑇 =  {𝑡1, . . . 𝑡𝑛} 

and 𝑃 =  {𝑝1 , . . . 𝑝𝑚},  M consists of one entry for each 

unmapped task. In the second phase, the task with the 

overall minimum completion time from M is selected 

and assigned to the corresponding machine and the 

workload of the selected machine will be updated. And 

finally, the newly mapped task is removed from T and 

the process repeats until all tasks are mapped. 

This algorithm complies with the QoS rules and 

requirements, since it matches only the tasks requesting 

high QoS to hosts having high QoS. 
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A new version of Min-Min approach was proposed 

by He et al. [3] to improve the original algorithm results. 

Effectively, by applying the both algorithms on the same 

system, traditional Min-Min and QoS Guided Min-Min, 

the makespan given by QoS Guided Min-Min shows a 

significant improvement. 

The Max-min heuristic closely resembles min-min 

and shares the same metric MCT. It initiates by 

considering the set T, comprising all unmapped tasks. 

Subsequently, the heuristic identifies the set of minimum 

completion times, denoted as: 

𝑀 =  {𝑀𝑖𝑛 (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒(𝑡𝑖 , 𝑝𝑗))}, 𝑇 =  {𝑡𝑖, . . . 𝑡𝑛} 

and 𝑃 =  {𝑝1 , . . . 𝑝𝑚}. Then, the task with the highest 

completion time among the elements in M is chosen and 

assigned to the corresponding machine, resulting in an 

update to the workload of that machine. Finally, the 

newly mapped task is removed from T, and the process 

repeats until all tasks have been mapped [14, 15]. 

 

Table 1 

Summary comparison table of the Min-Min, QoS Min-Min, and Max-Min scheduling algorithms 

Algorithm Advantages Disadvantages Complexity 

Min-Min 

- Tends to minimize the makespan by prioritizing 

shorter tasks on faster processors, balancing load. 

- Can lead to load imbalance, as longer tasks are 

often delayed until the end. 

- 𝑂(𝑛. 𝑚), where n is the 

number of tasks. 

- Simple to implement and effective for 

heterogeneous systems with varied task sizes. 

  

QoS 

Min-Min 

- Incorporates Quality of Service (QoS) constraints, 

ensuring high-priority tasks are scheduled sooner. 

- Additional overhead from handling QoS 

requirements, potentially increasing complexity. 

- 𝑂(𝑛2. 𝑚), due to QoS 

calculations. 

- Balances efficiency with service quality, 

improving task response times for critical tasks. 

- May deprioritize low-QoS tasks, leading to 

potential delays in completing all tasks. 

 

Max-Min 

- Prioritizes longer tasks, helping balance load by 

assigning longer tasks first. 

- Might increase the makespan since shorter tasks 

are delayed, especially in heterogeneous systems. 

- 𝑂(𝑛. 𝑚), similar to 

Min-Min 

- Useful for tasks with high variance in execution 

times, minimizing idle times of processors. 

  

3. Dynamic Adaptation 

In the ever-evolving landscape of distributed 

systems, optimizing performance while adapting 

dynamically to changing conditions remains a 

fundamental challenge.  

Distributed systems consist of interconnected and 

geographically dispersed nodes that collaboratively  

execute tasks. These systems are characterized by their 

heterogeneity, dynamic workloads, and varying resource 

availability. Ensuring optimal performance in such 

environments requires efficient task scheduling, resource 

allocation, and real-time adaptability [19]. 

One of the primary concerns in distributed systems 

is the optimization of key performance metrics, such as 

makespan, resource utilization, latency, and throughput. 

Traditional scheduling algorithms often fail to address 

the complexities introduced by heterogeneity and 

dynamic conditions, such as fluctuating workloads or 

node failures. As a result, they struggle to maintain 

system efficiency and scalability in real-world scenarios. 

Dynamic adaptation, which involves the ability to 

reallocate tasks and adjust system configurations in 

response to changes, is essential for enhancing 

distributed system performance. However, achieving this 

requires advanced algorithms capable of balancing 

computational loads, respecting task dependencies, and 

optimizing resource usage in real-time. 

This research addresses these challenges by 

developing innovative optimization techniques that 

incorporate dynamic adaptation to improve distributed 

system performance. The goal is to design methods that 

can efficiently manage heterogeneous resources, handle 

dynamic workloads, and minimize execution time while 

maximizing resource utilization. By tackling these 

issues, this work contributes to advancing the efficiency, 

scalability, and reliability of distributed systems in 

diverse applications, from cloud computing to real-time 

data processing. 
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4. Contribution 

Dynamic programming methods are frequently 

employed to tackle discrete optimization problems, as 

these problems are often NP-hard. Researchers are 

increasingly drawn to leveraging algorithms and models 

derived from local search techniques to address the 

challenges of task scheduling. Consequently, local 

optimization strategies and dynamic programming 

approaches [17] have been developed and have proven 

effective in producing efficient scheduling solutions. 

This work aims to demonstrate the effectiveness of our 

approach, which utilizes dynamic programming to solve 

scheduling problems. 

4.1. Dynamic Programming 

In the context of task scheduling, dynamic 

programming (DP) is often used to optimize tasks 

allocation across processors to minimize the makespan 

or another objective. Here is a general mathematical 

model for a dynamic programming algorithm to solve a 

task scheduling problem on heterogeneous computing 

systems (HCS), where we aim to minimize the makespan 

See Definition 2 (i.e., the maximum time to complete all 

tasks). 

The objective is to assign each task to a processor in 

such a way that the makespan, or the maximum 

completion time among all processors, is minimized.  

4.1.1. Definitions and Notation 

Tasks: T =  { t1, t2, . . .  , tn }   represent a set of n tasks, 

where each task  𝑡_𝑖  has a specific workload. 

Processors: P =  { p1, p2, . . .  , pm }     represent a set of 

m heterogeneous processors, each with a distinct 

processing speed. 

Processing Times: For each task  𝑡𝑖  and processor 𝑝𝑗, 

let  𝑐𝑖,𝑗  denote the processing time required to complete 

task 𝑡𝑖 on processor 𝑝𝑗. This processing time depends on 

both the task’s workload and the processor’s speed. We 

define it as: 

𝑐𝑖,𝑗 =  
𝑤𝑖

𝑠𝑗

 
(1) 

where: 

𝑤𝑖   is the workload of task  𝑡𝑖. 

𝑠𝑗  is the speed of processor  𝑝𝑗. 

Decision Variable: Let  𝑥𝑖,𝑗 be a binary decision variable 

such that: 

 

𝑥𝑖,𝑗 = {
1  𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑡𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑝𝑗

 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                    
 

 

Makespan: The makespan  𝐶𝑚𝑎𝑥, also known as the 

total schedule length or the completion time, is defined 

as the maximum finish time (FT) of the last task in the 

schedule across all processors. It represents the time 

required to complete all tasks, as shown in Equation (1,2) 

[18]. 

 

𝐶𝑚𝑎𝑥 = max(𝐹𝑇(𝐸𝑥𝑖𝑡𝑇𝑎𝑠𝑘))                             (2) 

 

where: 

𝐹𝑇:  is the finish time of task 𝑖, 

𝐶𝑚𝑎𝑥:  is the overall makespan or total schedule length. 

𝐸𝑥𝑖𝑡_𝑇𝑎𝑠𝑘: is the last scheduled task. 

4.1.2. Mathematical Model  

Let T represent a set of tasks to be scheduled, and  𝑇𝑘 

be the subset of tasks assigned to processor  𝑃𝑚. 𝑇𝑘  is the 

optimal subset of tasks that satisfies the recursive relation 

provided in Equation (3). 

 

Recursive Relation 

The recursive relation captures the trade-off between 

assigning tasks to different processors to balance the 

workload. For each task  𝑡𝑖 and processor 𝑝𝑗, the 

recursive relationship can be expressed as: 

 

𝐷𝑃(𝑖, 𝑗) = min(max(𝐷𝑃(𝑖 − 1, 𝑗), 𝑐𝑖,𝑗)) (3) 

 

where: 

𝐷𝑃(𝑖 − 1, 𝑗) : The makespan when assigning 𝑖 − 1  tasks 

among j processors. 

 

Boundary Conditions 

• Base Case:  

 If there are no tasks (𝑛 = 0),  𝐷𝑃(0, 𝑗) = 0 for all 𝑗 . 

• Single Processor Case: 

 If there is only one processor (𝑗 = 1),            

𝐷𝑃(𝑖, 𝑗) =  ∑ 𝑐𝑖,1
𝑖
𝑗=1  the cumulative time to execute all 

tasks sequentially on  𝑝1 . 
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Objective Function 

The goal is to minimize the maximum completion 

time across all processors, hence the makespan 𝐶𝑚𝑎𝑥: 

 

𝐶𝑚𝑎𝑥 = min
j

(𝐷𝑃(𝑖, 𝑗)) (4) 

4.2. Dynamic Adaptation vs Dynamic Programming 

Dynamic adaptation in multiprocessor systems refers 

to the ability of the system to adjust task allocation and 

resource utilization in real-time to respond to changes in 

workload, resource availability, or system states. It is a 

critical feature for maintaining efficiency and 

performance in heterogeneous environments where tasks 

may have varying execution requirements and system 

conditions can fluctuate dynamically. 

Dynamic programming (DP) serves as an effective 

approach to achieving dynamic adaptation in task 

scheduling for multiprocessor systems. DP breaks the 

scheduling problem into smaller, manageable 

subproblems and solves them incrementally, ensuring 

that each decision contributes to the global optimization 

of performance metrics, such as makespan or resource 

utilization. This recursive method allows the system to 

re-evaluate and adapt task assignments as conditions 

change, ensuring optimal decisions are made even in 

dynamic environments. 

The relationship between dynamic adaptation and 

dynamic programming lies in DP’s inherent flexibility 

and systematic approach to optimization. By leveraging 

DP, task scheduling algorithms can: 

1. Handle Dynamic Workloads: Reassign tasks 

dynamically to processors based on real-time system 

states, ensuring balanced workloads and efficient 

processor utilization. 

2. Optimize in Real-Time: Continuously adjust the 

scheduling solution as new tasks arrive or as 

resources become available or fail, maintaining 

system responsiveness. 

3. Integrate Task Dependencies: Account for task 

precedence and succession constraints while 

dynamically adapting schedules, ensuring correct 

task execution order. 

4. Reduce Decision Complexity: By breaking the 

global scheduling problem into smaller 

subproblems, DP simplifies the process of making 

optimal decisions in complex, dynamic systems. 

In summary, dynamic programming provides the 

computational framework to implement dynamic 

adaptation in multiprocessor systems. Its ability to 

adaptively and efficiently allocate tasks in response to 

changing conditions makes it a foundational tool for 

achieving real-time optimization and robustness in these 

environments. 

4.3. Proposed Approach 

Based on the scheduling model (See Definition 1), 

our approach, Dynamic Tasks Scheduling Approach 

Knapsack based DyTAg is a scheduling algorithm that 

performs in a heterogeneous computing system. By 

means of dynamic programming, DyTAg combines 

between resource optimisation and completion time 

minimisation.  

To apply dynamic programming (DP) to minimize 

the makespan (See Figure 1), we define a DP state that 

keeps track of the minimum achievable makespan up to 

each task assignment. The goal is to incrementally assign 

tasks to processors in a way that minimizes the maximum 

load across all processors. The method process steps are 

outlined as follows: 

 

State Definition 

Let 𝐷𝑃(𝑖, 𝑗)  represent the minimum possible 

makespan after assigning the first  𝑖  tasks across 𝑗  

processors. 

 

Recurrence Relation 

Base Case: 𝐷𝑃(0, 𝑗) = 0 ∀ 𝑗 = 1,2, … , 𝑚. This 

means that if there are no tasks, the makespan is zero on 

all processors. 

 

Recursive Case:  

For each task  𝑇𝑖   and each processor  𝑃_𝑗 , the DP 

formula to update 𝐷𝑃(𝑖, 𝑗)  is based on the workload of 

assigning  𝑇𝑖  to 𝑃𝑗 and then finding the maximum time 

required by any processor: 

 

𝐷𝑃(𝑖, 𝑗) = min
m

𝑘=1(max(𝐷𝑃(𝑖 − 1, 𝑘), 𝐷𝑃(𝑖, 𝑘) +

𝑐𝑖,𝑗))                   (5) 

 

Here, the inner maximum accounts for the load 

balancing effect of assigning task  𝑇𝑖   to processor  𝑃𝑗 , 
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and the outer minimum ensures that we find the 

minimum makespan across all valid assignments. 

Solution 

 

The solution is obtained by performing the following 

calculation: 

 

𝐶𝑚𝑎𝑥 = min
j

(𝐷𝑃(𝑛, 𝑗))                (6) 

where: 𝐷𝑃(𝑛, 𝑗) gives the makespan after all n tasks are 

assigned across m processors. 

 

Figure 1: DyTAg algorithm for minimizing makespan in a 

heterogeneous multiprocessor system 

4.3 Assumptions 

In our approach, we assume that: 

1. All tasks are non-preemptive, meaning that once a 

task begins execution on a processor, it runs to 

completion without interruption. 

2. The execution costs of tasks are known and 

deterministic. 

3. The processors have varying speeds. 

4. There are no precedence constraints between tasks. 

 

 

 

 

5. Results and Discussion 

The experimental section of the paper primarily 

focuses on the performance differences between our 

proposed technique and existing scheduling approaches. 

In addition, these tests highlight the importance of 

dynamic adaptation to reduce schedule length, 

particularly in Heterogeneous Computing Systems 

(HCS), where every performance metric significantly 

impacts the overall process. This section includes a 

comparison of our approach with traditional methods 

such as Min-Min and QoS Guided Min-Min. The impact 

of dynamic adaptation is also emphasized, demonstrating 

how real-time adjustments to task allocation and 

resource utilization improve system performance under 

varying workloads and resource conditions. 

Furthermore, the relevance of using dynamic 

programming with the DyTAg algorithm is highlighted, 

as it enables the system to adapt efficiently to dynamic 

environments by incrementally optimizing task 

scheduling, thus ensuring the best possible outcome in 

changing conditions. Finally, the results demonstrate 

improvements over well-established and recent 

approaches. Each test is conducted within a real-time 

context to ensure that the results closely reflect actual 

system environments. 

5.1. Comparison Metrics 

The scheduling approaches in this study are evaluated 

using the following metrics. 

 

Execution Time 

time to calculate algorithm execution time for 

performance’s purposes. 

 

time = FinishTime – BeginTime                (7) 

Makespan also defined as schedule length (See 

Definition) 

Processors’ utilisation Ratio (𝑷𝑼𝑹𝒂𝒕𝒊𝒐) 

Described as the difference utilisation rate between the 

most utilised and the less utilised processor divided per 

the processor's number. 

PURation = 

𝐶𝑚𝑎𝑥,− 𝑀𝑖𝑛(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟_𝐿𝑜𝑎𝑑𝑗)

|𝑃|
 

(8) 
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5.2. Experimental Results 

In this section we aim to highlight the differences that 

can be noticed, this process is done by comparing 

DyTAg results to Min-Min and QoS guided Min-Min. 

Aforementioned purposes above, we consider the 

following example summarised below (Table 2). 

 

Table 2 

Tasks-set execution costs on three processors p1, p2, p3 

Processors t1 t2 t3 t4 t5 t6 t7 

p1 76 56 23 29 10 40 29 

p2 98 90 54 50 22 65 76 

p3 82 68 40 43 17 51 45 

 

𝐶𝑚𝑎𝑥 = min
j

(𝐷𝑃(7, 𝑗))  ⇒  𝐶𝑚𝑎𝑥 = 115 

 

The results are compared with Min-Min [15] and 

QoS guided Min-Min [3] in the following figure: 

 

 
 

Figure 2: Min-Min, Max-Min, QoS guided Min-Min and DyTAg 

makespan comparison 

In this comparison, the results demonstrate that the 

proposed approach outperforms others, with DyTAg 

achieving a makespan of 115 for the given set of tasks, 

showing its effectiveness. 

This result is reached by assigning 𝑡3, 𝑡6 to processor 

𝑝2 and  𝑡2, 𝑡4 to processor 𝑝3 and the remaining tasks 

𝑡1, 𝑡5, 𝑡7 to the last processor 𝑝1 . Min-Min gives a 

makespan of 140 while QoS Guided Min-Min and Max-

Min give both a makespan of 130, which results in a gain 

of 15% in this test with DyTAg.  

It is noted that complexities of DyTAg, Max-Min 

equal 𝑂(𝑛. 𝑚) and 𝑂(𝑛2. 𝑚) respectively where N is the 

number of tasks, m number of processors and. This 

complexity disparity results to a better DyTAg’s 

performance then other algorithms, effectively in this 

example the complexity of DyTAg = 833 while the 

complexity of Max-Min = 1029, as a result 𝛥𝑇𝑖𝑚𝑒  

enhanced by 19.04% 

In the other hand, processors utilisation rate for our 

approach shows better results, 𝑃𝑈𝑅𝑎𝑡𝑖𝑜  (DyTAg) = 2 

while 𝑃𝑈𝑅𝑎𝑡𝑖𝑜  (Min-Min) = 25, the obtained result shows 

that DyTAg has a better resources management with fair 

tasks distribution compared to the other heuristics.  

6. Conclusion 

In this paper, we have introduced first a task 

scheduling algorithm for HCS called DyTAg, which is 

an approach based on dynamic programming applied for 

task allocation. 

The algorithm follows a systematic approach to task 

allocation, which includes the following key steps: (1) 

identifying and categorizing tasks based on their 

computational requirements, (2) selecting appropriate 

processors based on task characteristics and processor 

capabilities, (3) dynamically assigning tasks to 

processors while minimizing idle times, and (4) adjusting 

the schedule to ensure an optimal balance of load across 

processors. Our analysis demonstrated that DyTAg 

effectively reduces the overall makespan and improves 

task scheduling efficiency in heterogeneous 

environments. 

The process of our approach demonstrates how it 

minimizes computation time, making DyTAg a more 

efficient task scheduling solution compared to other 

algorithms. The performance of DyTAg is compared 

with well-known algorithms such as Min-Min, QoS 

Guided Min-Min, and Max-Min. The comparison 

metrics are based on examples from related work that 

consider heterogeneous multiprocessor systems with 

various task sets. As a result, DyTAg shows improved 

performance in terms of makespan and processing 

efficiency, outperforming the Min-Min algorithm. 
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Future work could focus on further optimizations, 

such as incorporating dynamic QoS constraints or 

addressing challenges in real-time scheduling scenarios. 
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