
Submitted on: 10/01/2025 Revue

Nature et Technologie
https://journals.univ-chlef.dz/index.php/natec

Revised forme accepted on: 27/02/2025

Corresponding author: ml.bendiaf@univ-chlef.dz

Research Article ISSN: 1112-9778 – EISSN: 2437-0312

This article is available under the BY Creative Commons Attribution 4.0 International License. The license ensures that the article

can be downloaded, printed out, extracted, reused, archived, and distributed, so long as appropriate credit is given to the authors.

Dynamic Adaptation for Independent Task Scheduling Using Dynamic

Programming in Multiprocessor Systems

Lotfi BENDIAFa,*, Ahmed HARBOUCHEb and Mohammed Amin TAHRAOUIb

a LME Laboratory, Faculty of Exact Sciences and Informatics, Hassiba Ben Bouali University of Chlef
b LIA Laboratory, Faculty of Exact Sciences and Informatics, Hassiba Ben Bouali University of Chlef

Citation: BENDIAF, L., HARBOUCHE, A. and TAHRAOUI, M.A. (2025, Mars 30) Dynamic Adaptation for Independent Task Scheduling Using

Dynamic Programming in Multiprocessor Systems. Revue Nature et Technologie. 17 (1), 09-16

Abstract

Performance in IT systems is critical to ensuring that systems meet user needs and expectations. In heterogeneous computing

systems (HCS), which consist of processors with varying capabilities, dynamic adaptation plays a vital role in maintaining high

performance. Dynamic adaptation enables systems to adjust task allocation and resource usage in real-time to respond to changes in

workloads, resource availability, and system conditions. Task scheduling is a key aspect of achieving dynamic adaptation and remains

a challenging NP-hard problem in HCS. Efficient scheduling requires optimizing competing objectives, such as minimizing makespan

and maximizing processor utilization, to ensure that resources are used effectively. In this work, we propose DYnamic Task Allocation

using dynamic programminG (DyTAg), a task scheduling algorithm based on dynamic programming, designed to support dynamic

adaptation in HCS. Dynamic programming is particularly suited to this context as it breaks the scheduling problem into smaller,

manageable subproblems and solves them incrementally, enabling efficient real-time adjustments. DyTAg leverages dynamic

programming to minimize makespan while maximizing resource utilization, ensuring that tasks are allocated optimally even in complex,

heterogeneous environments. To evaluate its performance, DyTAg is compared against established algorithms, including Min-Min, Max-

Min, and Quality of Service Guided Min-Min, using various task sets and processor configurations. The results demonstrate that DyTAg

achieves superior performance, particularly in scenarios involving independent tasks and small task sets, showcasing its potential to

enhance dynamic adaptation and optimize performance in heterogeneous computing systems.

Keywords: Dynamic Adaptation; Scheduling; Dynamic Programming; Multi-processor system; Heterogeneous computing environment

1. Introduction

In recent years, the field of computer science has

experienced rapid progress in both hardware and

software development, giving rise to innovative

technologies that have greatly enhanced efficiency and

usability within the Information Technology sector. In

particular, innovations like multi-core processors, multi-

processor systems, and distributed computing have

revolutionized heterogeneous computing environments.

A major challenge in distributed systems is

optimizing critical performance metrics, including

makespan, resource utilization, latency, and throughput.

Conventional scheduling algorithms frequently fall short

when confronted with the complexities of heterogeneity

and dynamic environments, such as varying workloads

or node failures, making it difficult for them to sustain

efficiency and scalability in practical applications.

Dynamic adaptation, which enables systems to

reassign tasks and modify configurations in response to

changing conditions, plays a crucial role in improving

the performance of distributed systems. Achieving this,

however, demands sophisticated algorithms capable of

balancing workloads, adhering to task dependencies, and

optimizing resource allocation in real-time.

However, while these advancements provide

powerful hardware platforms that greatly enhance

system performance, achieving high parallelism in HCS

https://journals.univ-chlef.dz/index.php/natec
mailto:ml.bendiaf@univ-chlef.dz
https://www.usaid.gov/sites/default/files/documents/1865/NW2-CCBY-HO7-Creative_Commons-Attribution_4_International.pdf

 Dynamic Adaptation for Independent Task Scheduling Using Dynamic Programming in Multiprocessor Systems

10

requires effective management on the software side as

well. Task scheduling in HCS, unfortunately, is an NP-

complete problem [1, 2], meaning that finding an optimal

scheduling solution is computationally intractable as the

problem size grows. Different scheduling approaches

yield varying execution times for the same set of tasks in

an HCS, highlighting the impact of scheduling

techniques on system performance.

The goal of task scheduling in HCS is to allocate

tasks to processors in a way that optimizes performance

in terms of Quality of Service (QoS) and resource

utilization. However, as demonstrated in [3], it is often

impossible to assign all priority tasks to the most

efficient processor while also meeting task precedence

constraints and minimizing the overall schedule length

(makespan).

Consequently, numerous scheduling algorithms

have been developed, each tailored to meet specific

objectives [4, 5]. For instance, the authors in [6] focus on

minimizing makespan, while Li et al. [7] propose an

algorithm for scheduling preemptible tasks to optimize

computational resources in Infrastructure-as-a-Service

(IaaS) cloud systems.

2. Background Materials

Performance is critical for ensuring that a system

can handle increasing amounts of data, traffic, or users

without degrading performance, because of the strong

relation between performances in IT systems and

scheduling.

To achieve minimal makespan, the authors in [8]

proposed a method for assigning tasks to processors

based on the minimum execution cost of each task across

different processors. However, in most cases, this

approach resulted in an increased makespan, leading to

poor QoS To address this issue, researchers such as

Ezzatti et al. [3, 9, 10] introduced an enhanced

implementation of the Min-Min heuristic that

incorporates QoS constraints.

On the other hand, the authors in [11] adapted a

distributed algorithm in cloud systems and proposed a

workflow scheduling algorithm which considers

dynamic priority of the tasks. This approach undergoes a

process of min–max normalisation [12] While the focus

of our research is essentially optimization, Stützle et al.

[13] introduced the MAX–MIN Ant System (MMAS),

an Ant Colony Optimization algorithm that models ants

as simple agents progressively building candidate

solutions. This approach is designed to address NP-hard

static combinatorial optimization problems effectively.

In this paper, we propose a dynamic adaptation

approach for a task scheduling algorithm in

heterogeneous computing environments using dynamic

programming. Our approach combines optimization of

node resource utilization with QoS considerations.

2.1. Scheduling Problem Context

First of all, we start by introducing the problem's

context in HCS, then its corresponding model according

to scheduling criteria, namely processors' computing

capacities, the total run time and system resource

utilisation.

The scheduling system is represented in [20] by the

quadruple 𝑆 = (𝑇, 𝐶, 𝑅, 𝑃) where 𝑇 = {𝑡1, . . . 𝑡𝑛}

denotes the set of tasks to be scheduled, 𝐶 = {𝑐1, . . . 𝑐}

the set of tasks' execution costs, 𝑅 = {𝑟1, . . . 𝑟𝑛}

corresponds to the task ranks, 𝑃 = {𝑝1, . . . 𝑝𝑛} set of

heterogeneous processors.

Numerous methods in the literature have tackled

related problem scenarios, each offering unique

advantages and facing specific limitations.

2.2. Literature Approaches

Min-min heuristic uses Minimum Completion Time

(MCT) as a metric, the heuristic uses as inputs the set T

of all unmapped tasks. It has two phases. In the first

phase, the set of minimum expected completion time M

is set up from T (For each task 𝑡𝑖 determine its minimum

completion time over all processors 𝑝𝑗 in P) where:

𝑀 = {𝑀𝑖𝑛(𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑡𝑖 , 𝑝𝑗))} 𝑇 = {𝑡1, . . . 𝑡𝑛}

and 𝑃 = {𝑝1 , . . . 𝑝𝑚}, M consists of one entry for each

unmapped task. In the second phase, the task with the

overall minimum completion time from M is selected

and assigned to the corresponding machine and the

workload of the selected machine will be updated. And

finally, the newly mapped task is removed from T and

the process repeats until all tasks are mapped.

This algorithm complies with the QoS rules and

requirements, since it matches only the tasks requesting

high QoS to hosts having high QoS.

BENDIAF, L. et al.

Citation: BENDIAF, L., HARBOUCHE, A. and M.A., TAHRAOUI (2025, Mars 30) Dynamic Adaptation for Independent Task Scheduling Using
Dynamic Programming in Multiprocessor Systems. Revue Nature et Technologie. 17 (1), 09-16

11

A new version of Min-Min approach was proposed

by He et al. [3] to improve the original algorithm results.

Effectively, by applying the both algorithms on the same

system, traditional Min-Min and QoS Guided Min-Min,

the makespan given by QoS Guided Min-Min shows a

significant improvement.

The Max-min heuristic closely resembles min-min

and shares the same metric MCT. It initiates by

considering the set T, comprising all unmapped tasks.

Subsequently, the heuristic identifies the set of minimum

completion times, denoted as:

𝑀 = {𝑀𝑖𝑛 (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒(𝑡𝑖 , 𝑝𝑗))}, 𝑇 = {𝑡𝑖, . . . 𝑡𝑛}

and 𝑃 = {𝑝1 , . . . 𝑝𝑚}. Then, the task with the highest

completion time among the elements in M is chosen and

assigned to the corresponding machine, resulting in an

update to the workload of that machine. Finally, the

newly mapped task is removed from T, and the process

repeats until all tasks have been mapped [14, 15].

Table 1

Summary comparison table of the Min-Min, QoS Min-Min, and Max-Min scheduling algorithms

Algorithm Advantages Disadvantages Complexity

Min-Min

- Tends to minimize the makespan by prioritizing

shorter tasks on faster processors, balancing load.

- Can lead to load imbalance, as longer tasks are

often delayed until the end.

- 𝑂(𝑛. 𝑚), where n is the

number of tasks.

- Simple to implement and effective for

heterogeneous systems with varied task sizes.

QoS

Min-Min

- Incorporates Quality of Service (QoS) constraints,

ensuring high-priority tasks are scheduled sooner.

- Additional overhead from handling QoS

requirements, potentially increasing complexity.

- 𝑂(𝑛2. 𝑚), due to QoS

calculations.

- Balances efficiency with service quality,

improving task response times for critical tasks.

- May deprioritize low-QoS tasks, leading to

potential delays in completing all tasks.

Max-Min

- Prioritizes longer tasks, helping balance load by

assigning longer tasks first.

- Might increase the makespan since shorter tasks

are delayed, especially in heterogeneous systems.

- 𝑂(𝑛. 𝑚), similar to

Min-Min

- Useful for tasks with high variance in execution

times, minimizing idle times of processors.

3. Dynamic Adaptation

In the ever-evolving landscape of distributed

systems, optimizing performance while adapting

dynamically to changing conditions remains a

fundamental challenge.

Distributed systems consist of interconnected and

geographically dispersed nodes that collaboratively

execute tasks. These systems are characterized by their

heterogeneity, dynamic workloads, and varying resource

availability. Ensuring optimal performance in such

environments requires efficient task scheduling, resource

allocation, and real-time adaptability [19].

One of the primary concerns in distributed systems

is the optimization of key performance metrics, such as

makespan, resource utilization, latency, and throughput.

Traditional scheduling algorithms often fail to address

the complexities introduced by heterogeneity and

dynamic conditions, such as fluctuating workloads or

node failures. As a result, they struggle to maintain

system efficiency and scalability in real-world scenarios.

Dynamic adaptation, which involves the ability to

reallocate tasks and adjust system configurations in

response to changes, is essential for enhancing

distributed system performance. However, achieving this

requires advanced algorithms capable of balancing

computational loads, respecting task dependencies, and

optimizing resource usage in real-time.

This research addresses these challenges by

developing innovative optimization techniques that

incorporate dynamic adaptation to improve distributed

system performance. The goal is to design methods that

can efficiently manage heterogeneous resources, handle

dynamic workloads, and minimize execution time while

maximizing resource utilization. By tackling these

issues, this work contributes to advancing the efficiency,

scalability, and reliability of distributed systems in

diverse applications, from cloud computing to real-time

data processing.

 Dynamic Adaptation with Independent Tasks Scheduling Using the Dynamic Programming in Multi-Processor

Systems

12

4. Contribution

Dynamic programming methods are frequently

employed to tackle discrete optimization problems, as

these problems are often NP-hard. Researchers are

increasingly drawn to leveraging algorithms and models

derived from local search techniques to address the

challenges of task scheduling. Consequently, local

optimization strategies and dynamic programming

approaches [17] have been developed and have proven

effective in producing efficient scheduling solutions.

This work aims to demonstrate the effectiveness of our

approach, which utilizes dynamic programming to solve

scheduling problems.

4.1. Dynamic Programming

In the context of task scheduling, dynamic

programming (DP) is often used to optimize tasks

allocation across processors to minimize the makespan

or another objective. Here is a general mathematical

model for a dynamic programming algorithm to solve a

task scheduling problem on heterogeneous computing

systems (HCS), where we aim to minimize the makespan

See Definition 2 (i.e., the maximum time to complete all

tasks).

The objective is to assign each task to a processor in

such a way that the makespan, or the maximum

completion time among all processors, is minimized.

4.1.1. Definitions and Notation

Tasks: T = { t1, t2, . . . , tn } represent a set of n tasks,

where each task 𝑡_𝑖 has a specific workload.

Processors: P = { p1, p2, . . . , pm } represent a set of

m heterogeneous processors, each with a distinct

processing speed.

Processing Times: For each task 𝑡𝑖 and processor 𝑝𝑗,

let 𝑐𝑖,𝑗 denote the processing time required to complete

task 𝑡𝑖 on processor 𝑝𝑗. This processing time depends on

both the task’s workload and the processor’s speed. We

define it as:

𝑐𝑖,𝑗 =
𝑤𝑖

𝑠𝑗

(1)

where:

𝑤𝑖 is the workload of task 𝑡𝑖.

𝑠𝑗 is the speed of processor 𝑝𝑗.

Decision Variable: Let 𝑥𝑖,𝑗 be a binary decision variable

such that:

𝑥𝑖,𝑗 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑡𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑝𝑗

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Makespan: The makespan 𝐶𝑚𝑎𝑥, also known as the

total schedule length or the completion time, is defined

as the maximum finish time (FT) of the last task in the

schedule across all processors. It represents the time

required to complete all tasks, as shown in Equation (1,2)

[18].

𝐶𝑚𝑎𝑥 = max(𝐹𝑇(𝐸𝑥𝑖𝑡𝑇𝑎𝑠𝑘)) (2)

where:

𝐹𝑇: is the finish time of task 𝑖,

𝐶𝑚𝑎𝑥: is the overall makespan or total schedule length.

𝐸𝑥𝑖𝑡_𝑇𝑎𝑠𝑘: is the last scheduled task.

4.1.2. Mathematical Model

Let T represent a set of tasks to be scheduled, and 𝑇𝑘

be the subset of tasks assigned to processor 𝑃𝑚. 𝑇𝑘 is the

optimal subset of tasks that satisfies the recursive relation

provided in Equation (3).

Recursive Relation

The recursive relation captures the trade-off between

assigning tasks to different processors to balance the

workload. For each task 𝑡𝑖 and processor 𝑝𝑗, the

recursive relationship can be expressed as:

𝐷𝑃(𝑖, 𝑗) = min(max(𝐷𝑃(𝑖 − 1, 𝑗), 𝑐𝑖,𝑗)) (3)

where:

𝐷𝑃(𝑖 − 1, 𝑗) : The makespan when assigning 𝑖 − 1 tasks

among j processors.

Boundary Conditions

• Base Case:

 If there are no tasks (𝑛 = 0), 𝐷𝑃(0, 𝑗) = 0 for all 𝑗 .

• Single Processor Case:

 If there is only one processor (𝑗 = 1),

𝐷𝑃(𝑖, 𝑗) = ∑ 𝑐𝑖,1
𝑖
𝑗=1 the cumulative time to execute all

tasks sequentially on 𝑝1 .

BENDIAF, L. et al.

Citation: BENDIAF, L., HARBOUCHE, A. and M.A., TAHRAOUI (2025, Mars 30) Dynamic Adaptation for Independent Task Scheduling Using
Dynamic Programming in Multiprocessor Systems. Revue Nature et Technologie. 17 (1), 09-16

13

Objective Function

The goal is to minimize the maximum completion

time across all processors, hence the makespan 𝐶𝑚𝑎𝑥:

𝐶𝑚𝑎𝑥 = min
j

(𝐷𝑃(𝑖, 𝑗)) (4)

4.2. Dynamic Adaptation vs Dynamic Programming

Dynamic adaptation in multiprocessor systems refers

to the ability of the system to adjust task allocation and

resource utilization in real-time to respond to changes in

workload, resource availability, or system states. It is a

critical feature for maintaining efficiency and

performance in heterogeneous environments where tasks

may have varying execution requirements and system

conditions can fluctuate dynamically.

Dynamic programming (DP) serves as an effective

approach to achieving dynamic adaptation in task

scheduling for multiprocessor systems. DP breaks the

scheduling problem into smaller, manageable

subproblems and solves them incrementally, ensuring

that each decision contributes to the global optimization

of performance metrics, such as makespan or resource

utilization. This recursive method allows the system to

re-evaluate and adapt task assignments as conditions

change, ensuring optimal decisions are made even in

dynamic environments.

The relationship between dynamic adaptation and

dynamic programming lies in DP’s inherent flexibility

and systematic approach to optimization. By leveraging

DP, task scheduling algorithms can:

1. Handle Dynamic Workloads: Reassign tasks

dynamically to processors based on real-time system

states, ensuring balanced workloads and efficient

processor utilization.

2. Optimize in Real-Time: Continuously adjust the

scheduling solution as new tasks arrive or as

resources become available or fail, maintaining

system responsiveness.

3. Integrate Task Dependencies: Account for task

precedence and succession constraints while

dynamically adapting schedules, ensuring correct

task execution order.

4. Reduce Decision Complexity: By breaking the

global scheduling problem into smaller

subproblems, DP simplifies the process of making

optimal decisions in complex, dynamic systems.

In summary, dynamic programming provides the

computational framework to implement dynamic

adaptation in multiprocessor systems. Its ability to

adaptively and efficiently allocate tasks in response to

changing conditions makes it a foundational tool for

achieving real-time optimization and robustness in these

environments.

4.3. Proposed Approach

Based on the scheduling model (See Definition 1),

our approach, Dynamic Tasks Scheduling Approach

Knapsack based DyTAg is a scheduling algorithm that

performs in a heterogeneous computing system. By

means of dynamic programming, DyTAg combines

between resource optimisation and completion time

minimisation.

To apply dynamic programming (DP) to minimize

the makespan (See Figure 1), we define a DP state that

keeps track of the minimum achievable makespan up to

each task assignment. The goal is to incrementally assign

tasks to processors in a way that minimizes the maximum

load across all processors. The method process steps are

outlined as follows:

State Definition

Let 𝐷𝑃(𝑖, 𝑗) represent the minimum possible

makespan after assigning the first 𝑖 tasks across 𝑗

processors.

Recurrence Relation

Base Case: 𝐷𝑃(0, 𝑗) = 0 ∀ 𝑗 = 1,2, … , 𝑚. This

means that if there are no tasks, the makespan is zero on

all processors.

Recursive Case:

For each task 𝑇𝑖 and each processor 𝑃_𝑗 , the DP

formula to update 𝐷𝑃(𝑖, 𝑗) is based on the workload of

assigning 𝑇𝑖 to 𝑃𝑗 and then finding the maximum time

required by any processor:

𝐷𝑃(𝑖, 𝑗) = min
m

𝑘=1(max(𝐷𝑃(𝑖 − 1, 𝑘), 𝐷𝑃(𝑖, 𝑘) +

𝑐𝑖,𝑗)) (5)

Here, the inner maximum accounts for the load

balancing effect of assigning task 𝑇𝑖 to processor 𝑃𝑗 ,

 Dynamic Adaptation with Independent Tasks Scheduling Using the Dynamic Programming in Multi-Processor

Systems

14

and the outer minimum ensures that we find the

minimum makespan across all valid assignments.

Solution

The solution is obtained by performing the following

calculation:

𝐶𝑚𝑎𝑥 = min
j

(𝐷𝑃(𝑛, 𝑗)) (6)

where: 𝐷𝑃(𝑛, 𝑗) gives the makespan after all n tasks are

assigned across m processors.

Figure 1: DyTAg algorithm for minimizing makespan in a

heterogeneous multiprocessor system

4.3 Assumptions

In our approach, we assume that:

1. All tasks are non-preemptive, meaning that once a

task begins execution on a processor, it runs to

completion without interruption.

2. The execution costs of tasks are known and

deterministic.

3. The processors have varying speeds.

4. There are no precedence constraints between tasks.

5. Results and Discussion

The experimental section of the paper primarily

focuses on the performance differences between our

proposed technique and existing scheduling approaches.

In addition, these tests highlight the importance of

dynamic adaptation to reduce schedule length,

particularly in Heterogeneous Computing Systems

(HCS), where every performance metric significantly

impacts the overall process. This section includes a

comparison of our approach with traditional methods

such as Min-Min and QoS Guided Min-Min. The impact

of dynamic adaptation is also emphasized, demonstrating

how real-time adjustments to task allocation and

resource utilization improve system performance under

varying workloads and resource conditions.

Furthermore, the relevance of using dynamic

programming with the DyTAg algorithm is highlighted,

as it enables the system to adapt efficiently to dynamic

environments by incrementally optimizing task

scheduling, thus ensuring the best possible outcome in

changing conditions. Finally, the results demonstrate

improvements over well-established and recent

approaches. Each test is conducted within a real-time

context to ensure that the results closely reflect actual

system environments.

5.1. Comparison Metrics

The scheduling approaches in this study are evaluated

using the following metrics.

Execution Time

time to calculate algorithm execution time for

performance’s purposes.

time = FinishTime – BeginTime (7)

Makespan also defined as schedule length (See

Definition)

Processors’ utilisation Ratio (𝑷𝑼𝑹𝒂𝒕𝒊𝒐)

Described as the difference utilisation rate between the

most utilised and the less utilised processor divided per

the processor's number.

PURation =

𝐶𝑚𝑎𝑥,− 𝑀𝑖𝑛(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟_𝐿𝑜𝑎𝑑𝑗)

|𝑃|

(8)

BENDIAF, L. et al.

Citation: BENDIAF, L., HARBOUCHE, A. and M.A., TAHRAOUI (2025, Mars 30) Dynamic Adaptation for Independent Task Scheduling Using
Dynamic Programming in Multiprocessor Systems. Revue Nature et Technologie. 17 (1), 09-16

15

5.2. Experimental Results

In this section we aim to highlight the differences that

can be noticed, this process is done by comparing

DyTAg results to Min-Min and QoS guided Min-Min.

Aforementioned purposes above, we consider the

following example summarised below (Table 2).

Table 2

Tasks-set execution costs on three processors p1, p2, p3

Processors t1 t2 t3 t4 t5 t6 t7

p1 76 56 23 29 10 40 29

p2 98 90 54 50 22 65 76

p3 82 68 40 43 17 51 45

𝐶𝑚𝑎𝑥 = min
j

(𝐷𝑃(7, 𝑗)) ⇒ 𝐶𝑚𝑎𝑥 = 115

The results are compared with Min-Min [15] and

QoS guided Min-Min [3] in the following figure:

Figure 2: Min-Min, Max-Min, QoS guided Min-Min and DyTAg

makespan comparison

In this comparison, the results demonstrate that the

proposed approach outperforms others, with DyTAg

achieving a makespan of 115 for the given set of tasks,

showing its effectiveness.

This result is reached by assigning 𝑡3, 𝑡6 to processor

𝑝2 and 𝑡2, 𝑡4 to processor 𝑝3 and the remaining tasks

𝑡1, 𝑡5, 𝑡7 to the last processor 𝑝1 . Min-Min gives a

makespan of 140 while QoS Guided Min-Min and Max-

Min give both a makespan of 130, which results in a gain

of 15% in this test with DyTAg.

It is noted that complexities of DyTAg, Max-Min

equal 𝑂(𝑛. 𝑚) and 𝑂(𝑛2. 𝑚) respectively where N is the

number of tasks, m number of processors and. This

complexity disparity results to a better DyTAg’s

performance then other algorithms, effectively in this

example the complexity of DyTAg = 833 while the

complexity of Max-Min = 1029, as a result 𝛥𝑇𝑖𝑚𝑒

enhanced by 19.04%

In the other hand, processors utilisation rate for our

approach shows better results, 𝑃𝑈𝑅𝑎𝑡𝑖𝑜 (DyTAg) = 2

while 𝑃𝑈𝑅𝑎𝑡𝑖𝑜 (Min-Min) = 25, the obtained result shows

that DyTAg has a better resources management with fair

tasks distribution compared to the other heuristics.

6. Conclusion

In this paper, we have introduced first a task

scheduling algorithm for HCS called DyTAg, which is

an approach based on dynamic programming applied for

task allocation.

The algorithm follows a systematic approach to task

allocation, which includes the following key steps: (1)

identifying and categorizing tasks based on their

computational requirements, (2) selecting appropriate

processors based on task characteristics and processor

capabilities, (3) dynamically assigning tasks to

processors while minimizing idle times, and (4) adjusting

the schedule to ensure an optimal balance of load across

processors. Our analysis demonstrated that DyTAg

effectively reduces the overall makespan and improves

task scheduling efficiency in heterogeneous

environments.

The process of our approach demonstrates how it

minimizes computation time, making DyTAg a more

efficient task scheduling solution compared to other

algorithms. The performance of DyTAg is compared

with well-known algorithms such as Min-Min, QoS

Guided Min-Min, and Max-Min. The comparison

metrics are based on examples from related work that

consider heterogeneous multiprocessor systems with

various task sets. As a result, DyTAg shows improved

performance in terms of makespan and processing

efficiency, outperforming the Min-Min algorithm.

 Dynamic Adaptation with Independent Tasks Scheduling Using the Dynamic Programming in Multi-Processor

Systems

16

Future work could focus on further optimizations,

such as incorporating dynamic QoS constraints or

addressing challenges in real-time scheduling scenarios.

Conflicts of interest

The authors declare no conflict of interest.

References

[1] Gallet, M., Marchal, L., Vivien, F. (2009) Efficient scheduling of

task graph collections on heterogeneous resources. In: 2009 IEEE

International Symposium on Parallel & Distributed Processing

[Internet]. Rome, Italy: IEEE; 2009 [cited 2023 Oct 23]. p. 1–11.

Available from: http://ieeexplore.ieee.org/document/5161045/

[2] Ullman, JD. (1975) NP-complete scheduling problems. J Comput

Syst Sci. 10 (3), 384–93.

https://doi.org/10.1016/S0022-0000(75)80008-0

[3] He, X., Sun, X., Von Laszewski, G. (2003) QoS guided Min-Min

heuristic for grid task scheduling. J. Comput. Sci. Technol. 18 (4),

442–51. [Internet]

http://www.cs.iit.edu/~scs/assets/files/jcst_XHe-5-28.pdf
[4] Durillo, J. J., Prodan, R., Barbosa, J.G. (2015). Simul. Model. Pract.

Theory. 58 (part 1), 95–111.

https://doi.org/10.1016/j.simpat.2015.07.001
[5] Alkhanak, E.N., Lee, S.P., Rezaei, R., Parizi, R.M. (2016) Cost

optimization approaches for scientific workflow scheduling in

cloud and grid computing: A review, classifications, and open

issues. J. Syst. Softw. 113: 1–26.

https://doi.org/10.1016/j.jss.2015.11.023

[6] Panda, S.K. and Jana, P.K (2016) Uncertainty-Based QoS Min–Min

Algorithm for Heterogeneous Multi-cloud Environment. Arab J.

Sci. Eng. 41 (8), 3003–25. https://doi.org/10.1007/s13369-016-

2069-7

[8] Li, J., Qiu, M., Ming, Z., Quan, G., Qin, X., Gu Z. (2012) Online

optimization for scheduling preemptable tasks on IaaS cloud

systems. J. Parallel. Distrib. Comput. 72 (5), 666–77.

https://doi.org/10.1016/j.jpdc.2012.02.002

[9] Min-You Wu, Wei Shu and Zhang, H. (2000) Segmented min-min:

a static mapping algorithm for meta-tasks on heterogeneous

computing systems. In: “Proceedings 9th Heterogeneous

Computing Workshop (HCW 2000) (Cat NoPR00556)” [Internet].

Cancun, Mexico: IEEE Comput. Soc; 2000 [cited 2023 Oct 23]. p.

375–85. Available from:

https://doi.org/10.1109/HCW.2000.843759

[10] Ezzatti, P., Pedemonte, M., Martín, A. (2013) An efficient

implementation of the Min-Min heuristic. Comput. Oper. Res., 40

(11), 2670–6. https://doi.org/10.1016/j.cor.2013.05.014

[11] Pedemonte, M., Ezzatti, P., Martín A. (2026) “Accelerating the

Min-Min Heuristic”. In: Wyrzykowski R, Deelman E, Dongarra J,

Karczewski K, Kitowski J, Wiatr K, editors. “Parallel Processing

and Applied Mathematics” [Internet]. Cham: Springer

International Publishing; 2016 [cited 2023 Oct 23]. p. 101–10.

(Lecture Notes in Computer Science; vol. 9574). Available from:

http://link.springer.com/10.1007/978-3-319-32152-3_10

[12] Gupta I., Kumar M.S., Jana P.S. (2018) Efficient Workflow

Scheduling Algorithm for Cloud Computing System: A Dynamic

Priority-Based Approach. Arab J. Sci. Eng., 43 (12), 7945–60.

https://doi.org/10.1007/s13369-018-3261-8

[13] Etminani, K. and Naghibzadeh, M. (2007) “A Min-Min Max-Min

selective algorihtm for grid task scheduling”. In: 2007 3rd

IEEE/IFIP International Conference in Central Asia on Internet

[Internet]. Tashkent: IEEE; 2007 [cited 2023 Oct 23]. p. 1–7.

Available from: http://ieeexplore.ieee.org/document/4401694/

[14] Stützle, T. and H.H. Hoos. (2000) Max-Min Ant System. Future

Gener Comput Syst., 16 (8), 889–914.

https://doi.org/10.1016/S0167-739X(00)00043-1

[15] Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M.,

Halderman, M., Hensgen, D. et al. (1998) Scheduling resources in

multi-user, heterogeneous, computing environments with

SmartNet. In: Proceedings Seventh Heterogeneous Computing

Workshop (HCW’98) [Internet]. Orlando, FL, USA: IEEE

Comput. Soc; 1998 [cited 2023 Oct 23]. p. 184–99. Available

from: doi: 10.1109/HCW.1998.666558

[16] Braun, T.D, Siegal, H.J., Beck, N., Boloni, L.L., Maheswaran, M.,

Reuther, A.I. et al. (1999) A comparison study of static mapping

heuristics for a class of meta-tasks on heterogeneous computing

systems. In: Proceedings Eighth Heterogeneous Computing

Workshop (HCW’99) [Internet]. San Juan, Puerto Rico: IEEE

Comput. Soc; 1999 [cited 2023 Oct 23]. p. 15–29. Available from:

doi: 10.1109/HCW.1999.765093

[17] Zouache, D., Moussaoui, A., Ben Abdelaziz F. (2018) A

cooperative swarm intelligence algorithm for multi-objective

discrete optimization with application to the knapsack problem.

Eur. J. Oper. Res. 264 (1), 74–88.

https://doi.org/10.1016/j.ejor.2017.06.058

[18] Galimyanova, N.N. (2008) Experimental investigations of

combined algorithms of branch and bound method and dynamic

programming method for knapsack problems. J. Comput. Syst. Sci.

Int., 47 (3), 422–8. https://doi.org/10.1134/S106423070803012X

[19] Saho, R.M. and Kumari Padhy, S. (2022) A novel algorithm for

priority-based task scheduling on a multiprocessor heterogeneous

system. Microprocess. Microsyst., 95, 104685.

https://doi.org/10.1016/j.micpro.2022.104685

http://ieeexplore.ieee.org/document/5161045/
https://doi.org/10.1016/S0022-0000(75)80008-0
http://www.cs.iit.edu/~scs/assets/files/jcst_XHe-5-28.pdf
https://doi.org/10.1016/j.simpat.2015.07.001
https://doi.org/10.1016/j.jss.2015.11.023
https://doi.org/10.1007/s13369-016-2069-7
https://doi.org/10.1007/s13369-016-2069-7
https://doi.org/10.1016/j.jpdc.2012.02.002
https://doi.org/10.1109/HCW.2000.843759
https://doi.org/10.1016/j.cor.2013.05.014
http://link.springer.com/10.1007/978-3-319-32152-3_10
https://doi.org/10.1007/s13369-018-3261-8
http://ieeexplore.ieee.org/document/4401694/
https://doi.org/10.1016/S0167-739X(00)00043-1
doi:%2010.1109/HCW.1998.666558
doi:%2010.1109/HCW.1999.765093
https://doi.org/10.1016/j.ejor.2017.06.058
https://doi.org/10.1134/S106423070803012X
https://doi.org/10.1016/j.micpro.2022.104685

