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Abstract

In this work, we will study the non-linear behavifra plate in cylindrical bending using an expadiarfunction with gradient of
material properties (Commonly called E-FG). The gdatire subjected to uniform loading and geometidinmearity is introduced into
relationship the stress-strain using the expressiamlinear deformations of Von Karman's. The nialt@roperties of the plate, except the
Poisson coefficient, are assumed to vary in thection of thickness z in the form of an exponenidaVy distribution. The solution is
obtained by using the Prince of Hamilton. Numeriealults by an exponential function with gradiehpmperties are given in the form of
graphs non-dimensional; and determine the effettt@fmaterial properties on the deflection andnirenal stress across the thickness.
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1. Introduction

The composite material consists of the assembtyof
or more materials of different nature, which makes
possible to increase the required performance. Wewye
the discontinuity of the material properties thrbuthe
interface of the composite material constituentsisea
stress concentrations under mechanical and thdoads.

To eliminate singular stresses in an ultra-warm
environment, the concept of materials with gradient
properties (FGM) was introduced in 1984 by a grofip
scientists in Japan [1, 2].

Functionally graded materials (FGMs) are under the
microscope of non-homogeneous composite materials,
their mechanical properties vary gradually and
continuously from one surface to another. The caitipm
changes from a ceramic surface to a metal surface
following to a function of the volume fraction dfd two
materials between the two surfaces.

FGMs plates are generally used in thin structure$ a
therefore, it is interesting to study and undedtdoe non-
linear behavior of plates with gradient materialsder
uniform loading. Several linear studies of the feat
FGM plates in a thermal environment are preser@e8]|
However, the investigations in nonlinear analysisthe

FGM plates under thermal or mechanical loading are
limited in number. For example, Praveen and Redy |
have analyzed the non-linear response of ceramialme
gradient material plates using the finite elememthod
taking into account transverse shear deformati®udar
inertia and large moderate rotations in the seriséon
Karman. Reddy [10] presented the solutions of repiar
plates in FGM using the third order theory of plateear
deformations. The large deformations of the FGMegda
under uniform loading were also studied by GhanoadP
and Alinia using the Von-Karman theory [11]. Thrbuhe
thickness, the distribution of the stresses ofaheninum
and alumina plates is linear in contrast in thetgslain
FGM the behavior is nonlinear and is a functionttod
variation of the properties in the direction of théickness.

A similar method was used by Sun and Chin [12, 13],
Navazi et al[14] Concerning the non-linear cylindrical
flexion analysis of plates based on classical }hhéoPT).

The objective of our research is to determine the
displacements and the stresses of the plates 'EiffG
cylindrical bending under wuniform loading. The
equilibrium equations are obtained on the basisthef

! Exponential function with gradient of material pesgies (Commonly
called E-FG)
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classical theory of plates. Using non-linear defations of
Von Karman and the gradual variation of material
properties, the non-linear equilibrium equationse ar
obtained and are thus reduced to a linear diffakent
equation. This equation is solved by the boundary
conditions of a simply supported plate and we willdy

the effect of several parameters such as the inddhe
volume fraction, the type of loading and the diniens of

the plate.

2. Theory and Formulation
2.1.Properties material of the E-FGM plate

In this study, we consider a rectangular elastatepl
E-FGM with uniform thicknes$ and a length=2a. The
plate is made of a mixture of ceramic-metal; arg it
composition is assumed to be gradual varies fraatoip
to the bottom surface. In fact, the top surface I{/2) of
the plate is ceramic-rich whereas the bottom sarfac
(z=-h/2) is metal-rich. Consequently, the modulus of
elasticity is a function of, measured from the medium
plane of the plate. There are several models acalyand
mathematics to select the proper function of maleri
properties of the FGM. These functions are supptsdz
simple and continuous, and may have concave angegon
curvatures [15]. In this study, an exponential tfiorT to
describe the material properties of the FGMs isseho
The relation betweek andz of the FGM ceramic-metal
plate is given by the equation below, expresse8dilaiet
al [16]:

E(2=Aec®2) 1)
with
1 E
A=E d B==In| = 2
2 an I ( Ez] 2

where E(Z) indicates the Young's modulug; and E,
expresses respectively the Young's modulus of fipeu
surface =+h/2) and lower g=-h/2).

2.2.Nonlinear equations of E-FGM plates in
cylindrical bending

The fundamental equations of a large deformation
analysis of an FGM plate subjected to uniform logdare
briefly presented in this section. The use of dtadplate
theory (CPT) assumes that Kirchhoff's hypotheses ar

united. Kirchhoff's hypotheses assume that the
displacements are of the form:

(6,3,2) = tg(x,y) — 2 2 3
ulx,y,z) =uy(x,y) — z ox 3
(xy,2=0 4)
W(X,y,2) = Wo(X.y) 6)

where (,v,w) are respectively the displacements in the
directions K\y,2). Also, Uy,Vo,Wy) are respectively the
displacements of the medium plane in the sametairex

The nonlinear deformation-displacement relations of
Von Karman are as follows:

g 1w, )* 0w,
4 Y - 6
5T ox Z(GX] o ©
& =6,=0, @)
2
Vay = %4_%4_ Owo IWo —220 Wo
dy O0x Ox oy X0y 8)
Vxz = yyz =0,
The law of constraint-deformation behavior is

expressed in the form:

Jx Qll Q12 0 ‘gx

O 1=1Q2 Qp 0 & 9)
Txy 0 0 Q66 yxy

Using the materials properties given by eq. (1g th
stiffness coefficient®; can be expressed by:

_o,. - E2 10
Q1 =Qp 1-p2’ (10)
-V E2 11
Q. =252, (11)
_ H2?
Qs6 —72(1_'_‘/)- (12)

Using the Hamilton Principle, the governing equagio
in the description Euler - Lagrange are:

Nyx =0, (13)
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Qux +a+N,w,, =0 4 o
2 Ny
—_ — X
M X, X _Qx =0 (15) k= >N’ (24)
. . 11
whereq is the transverse loading. The normal force, the A
shear force and the moment results are given by:
- q
hi hi2 Yo Y (25)
(N,,Q,) = jtgx,rxy)dz and M, = [o,zdz (16) Dy, ——1t
-h/2 -h/2 A
From the eq. 13 we obtain:
0 3. The general solution
N, = Ny =const a7)
In this study, we assume a plate E-FG submitted to
Therefore, Eq. 14 and 15 become uniform transverse loading] in its upper surface. It is
0 intended herein to determine the analytical sotuid a
M X, XX + q + NXVV,XX = o’ (18)

By substituting Eq. 6, 7 and 8 in Eq. 9 and replnee
result in Eq. 16, the resulting forces as a fumcid the

components of the displacements can be presented as

follows:
1
Ny = Ail(u,x +E\N§<j - Bllw,xx* (19)
_ 15
M, =By U x +§W,x - Dllw,xx' (20)

A, By, and D;; are called the membrane stiffness, the

bending coupling stiffness and the bending stiffnes
respectively and are defined as follows:

h/2

A= [Qudz
-h/2
h/2

B,= [Quzdz
-h/2
h/2

D, = JQllzde

-h/2

(21)

By substituting Eq. (20) in Eg. (21) we obtain

2
Mx :BMNS+(BM_ DllJ \N,xx (22)
A, A,
By substituting Eq. (22) in Eg. (18), we obtain
(23)

Wxxx' kZWxx =0o

plate E-FG in non-linear bending.

3.1.Nonlinear analysis

Eq. (24) is a fourth order differential equationheT
general solution:

Go

W(x) = C, coshkx) + C, —?x2 (26)

The C; and C, constants can be determined using the
boundary conditions at the extremities of the plate
Suppose that the origin of the coordinate systesitusited
in the middle of the plate, the boundary conditiares:

w(@) =w(-a) =0 (27)
My(a) =My (-a)=0 (28)
u(@ =u(-a)=0 (29)

SinceN, is an unknown constant along the x-axis, the
displacement in plai can be achieved by integrating Eq.
(13) depending on the length of the plate, usirggéneral
solution shown in Eq. (26). The boundary conditicas
be expressed as:

Wa) =0 (30)

Mx(a)=%NS—[Dn—izlijx (31)

1 All

X=a
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u(a) = ‘[[ X +Bll

1 >
<~ =W |[dx=0 (32)
A An T 2 ’X]

By substituting Eq. (26) in Eqg. (30§31) and (3z and
evaluate the integral of Eq. (32):

(Bu,%| 1

@ ( Ay KA ] coshka) (33)
_ G’

C,= ? —-C, coshka) (34)

u(a) = A&Xla+ 21 kC, sinh(ka) — 21 % 5

k cl( smh(Zka)——j (35)

—% + Cl%[kacosh((a) - sinhika)] =0

These three equations contain three unknquantities:
C,, C,, Nf(’ and a numerical method ansed to obtaitheir
solutions.

3.2.Linear analysis

Consider the theory of small deformations, t
infinitesimal deformations are applicable and tbalimear
term of the deformations of dh Karman is neglected. E
neglecting the nonlinear terms of the equilibriuguation:
i.e. the second term of Eq. (24), tf@lowing solution it
obtained for a linear analysis:

=gl - o BT e o)

(36)

u(x) ::%qoxg’%—%q)azx% (37)
1 1

4. Numerical application and discussiol

We assume that the Young's modulus of the u
surface of the plate EGM, E2, is 70 GPa, and that
lower surfacek; varies with their ratioEi/E,). Note that
the Poisson's coefficient is constant and equél3dor the
two constituents. The dimensi® of the plate a h=5 mm

anda= 0.5 m The results obtained from the analysis
presented in nodimensional terms as follov

e Length X= 1
a
« coordinate thickness 7= 2 ;
h
« deflection w=>.
h
. _ n\2
« axial stress §=—x (—)
Q11m \a
where quiQ;in, is the oefficient of stiffness of th
metal plate,
4
R n_ qoa
load parameter q “Ent

Figurel shows the variation of the Young's modulu:
the plate E-FGM @ a function of the ncdimensional
thickness of the plate fdt,/E, variable.
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Fig. 1: The variation of the Young's module of &-FG plate for
different ratio olE,/E,.

Figure 2 shows the variation of the maximt
deflection of the plate EG with, for example E;=380
GPa ande,=70 GPadepending on the logparameteq. It
shows that for maximum deflection higher tt0.25h the
norlinear solution is necessary. The increase in
intensity of the loadgenerates smaller deflection
nonlinear analysis than those found in linear asialyT his
type of behaviouis already covered in the literature
anti symmetricompounds [18
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Fig. 2: Variation of the non-dimensional centerei&fonwmacof the
E-FG plate versug'.

Figure 3 and 4 illustrates the variation of the -non
dimensional deflection as a function of the non-
dimensional deflection for different ratig,/E, in linear
and non-linear analysis respectively. The E-FG epliat
subjected to loadg=1KN/m2. The linear solution
overestimates the deflection of the plate E-FG.
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Fig. 4: Non-dimensional deflections due to transedoady = 1 KN/m?
versus non-dimensional length for differ&atE; in non-linear analysis.

Figure 5 illustrates the non-dimensional variatidnhe
maximum deflection of the E-FG plate with different
values of E/E; subjected to uniform transverse loading.

15

Non-dimensional Maximal Deflection, wh

-1,5 T T T T T
-2 -1 0 1 2

Non-dimensional Transverse Load, q

Fig. 5: Variation of the non-dimensional centere@ionwmaxof the
E-FG plate versug" for differentEy/E,

The result shows that the homogeneous pBi#E{=1)
has a larger deflection. It also shows that theéeplas a
different behaviour under a positive and negative
transverse loading. Under negative loading, at the
beginning of loading, nonlinear analysis shows darg
deflection. However, under positive loading, weenan
important effect of the ratiB,/E,.

Figure 6 and 7 show the distribution of non
dimensional stress, as a function of the thickness of the
plate E-FG subject to uniform loadimy= 1 KN/mz2 for
different Ei/E, in linear and nonlinear analysis,
respectively. Under uniform loading, compressivesses
appear at the lower fiber and tensile stress atufiyer
fiber. In the linear case, it can be seen that dor
homogeneous plate fdE,/E,=1, the value of the tensile
and compression stresses are equal. However, for th
nonlinear case, this observation is not verifiee Btress
for a homogeneous plate varies linearly across the
thickness for linear and nonlinear analysis. Thelstof
these figures points out that when the raBoE,=1
increases, the intensity of the tensile and congwas
stresses is not equal.
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in non-linear analysis.
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Fig. 8: Non-dimensional deflections of E-FG platessus non-
dimensional deflections of homogeneous plate faoua material
parameters in non-linear analysis{ 1 KN/m?2).

5. Conclusion

The nonlinear analysis of the E-FG plate in cylioalr
bending under uniform
fundamental equations for an E-FG thin plate arainbd
using the Von-Karman theory of large deformatiofke

loading is studied. The

linearity of the differential equations simplifiethe

analysis of the large deformations. The stressed an

deflection are calculated for plates with a ceramatal
mixture. The numerical results show that the naan
effects of the plate responses are significant.e@ilse,
the results indicate that the nonlinear effect éases the
intensity of transverse deflection.
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across the thickness of the plate.

For the problem in cylindrical bending, we havedfin
that the Navier equations under the theory of large
deformations can be expressed in linear equatiériheo
deflection using non-linear boundary conditions.isTh




