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Abstract 

The Contact between two surfaces with normal and tangential force involve friction dissipation  phenomenon .The  

friction  phenomenon  can  be  formulated  as  a  constitutive  relation  in  a  similar  form   to  that  of  the elasto-plastic 

constitutive equation  of materials, the present  paper studies of sliding and slip rules  of elastic frictional contact by using the 

formalism of plasticity, for regularized  passage from stick to sliding in contact of solids. It purpose  is to present  new   

approach for regularized constitutive model for interface contact elastic with friction, this model is implemented infinite 

element code ABAQUS by user subroutine Vfric.   

 

Keywords: Slip rules, frictional contact, sub-loading friction model, multi-surface plasticity

1. Introduction 

Frictional contact between surfaces is an area of 

intense research, with several applications in mechanics. 

Many phenomena occur in the interface, and modeling of 

them is quite difficult. The difficulty in analyzing contact 

friction problems and poor understanding of frictional 

phenomena  ,a lot of studies investigate the describing 

friction phenomena in contact solids, in most of case 

interface friction is modeled using The  classic friction 

model  incorporate  the penalty parameters representing 

fictious spring between contact surface Constitutive 

equations of friction within the framework of elasto-

plasticity were formulated first as rigid-plasticity by 

Michalowski and mroz , Subsequently,   they were 

extended to elasto-perfect-plasticity by curnier, Wriggers, 

Giannakopoulos and others authors  which incorporates 

the penalty parameters representing fictitious spring 

between contact surface, However, these equations fall 

within the framework of conventional elasto-plasticity, 

which assumes a friction-yield surface enclosing a purely 

elastic domain, kiruchi developed a subloading friction 

model  describing the smooth transition from static to 

kinetic friction. In the present paper we shall discuss an 

improvement the stick slips rules at elastic plastic 

frictional contact. 

2. Analytical formulation of elastic frictional contact 

Hertz considered the normal contact of two spheres 1 

and 2, as shown in figure1, For sphere 1 we consider R1to 

be the radius, υ1 the Poisson's ratio, and E1the Young's 

modulus. Similarly, R2, υ2, E2 are the properties of sphere 

2. We define for the contact the equivalent elastic 

modulus E and the equivalent contact curvature R as: 

1

E
=

1−υ1
2

E1

+
1−υ2

2

E2

                                                   (1) 

 and                   

 
1

R
=  

1

R1

+
1

R2

                                            (2) 

According to Hertz theory for the elastic contact of 

two spheres in the normal direction, the radius of the 

circular contact area a is expressed as 

a =  KNR 
1
3                                   (3) 
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with           K =
3 1−υ2 

4𝐸
 

The  distribution  of normal  tractions  at  the  contact  

plane  is  described  by  the  relation: 

p r =
3N

2πa3
 a2 − r2 

1
2        (4) 

The approach of the two sphere centers due to normal 

loading N, can be calculated using 

α = 2  
KN

 R
 

2
3 
                    (5) 

 
Figure 1: Two spheres in contact and subjected to normal and tangential 

forces. 

 

Application of the tangential force Q under constant 

normal force induces development of slip with a circle 

domain expanding from the outer contact boundary r = a, 

the tangential traction distribution in the contact zone is: 

τ =
3μN

2πa3
 a2 − r2 

1
2c ≤ r ≤ a 

 

τ =
3μN

2πa3
  a2 − r2 

1
2 −  c2 − r2 

1
2 r ≤ c 

  (6)

 

 

The tangential displacement of the center of spheres is 

expressed as follows: 
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where μ is coefficient of friction. 

3. Application Model of Friction to FEM 

  3.1. Classical friction law 

General  FE  contact  modelling  is  often  based  on  a  

master-slave approach,  where  the  nodes  on  the  slave  

surface are  not  allowed  to  penetrate  the  segments  of  

the  master surface,  a  variational  formulation  of  the  

contact  between  two  deformable  bodies  constitutes  a  

good  basis  for  the  development  of  a  constitutive  law  

of  friction  including  an  impenetrability  condition. To  

this end  consider  two  bodies,  one called the  master  

and  the  other  the slave,  bound  to  contact  one  another  

within  a  surface  A characterized  by  the  unit  outward  

normal n  to  the  target .The gap gn represents the 

distance of contact  separating each  point from master 

and slave body , the contact condition is given by 

g
n
≥ 0       fn ≥ 0           fn. g

n
= 0     (8) 

Coulomb’s friction law states that friction force is 

proportional to the normal force through the global 

following relation       

Q ≤ μ. N                       (9) 

The contact zone may be divided into two parts 

(Figure 2), sticking and slipping parts are defined 

according to the relation between the tangential friction 

and normal stress as 

q < μ. fn      Sticking and ut = 0 

q ≥ 𝜇. fn        Slipping and ut = −γ. τ            (10) 

 

 

Figure 2:  Representation of the coulomb friction 
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ABAQUS used for numerical analyses, Coulomb 

friction model , by assumed that no relative motion occurs 

if the equivalent frictional stress q
eq

=  q
1
2 + q

2

2
 is less 

than the critical stress(μ. fn), where q1 and q2  are 

frictional stresses in the two orthogonal directions on a 

contact surface, and μ  and fn are the friction coefficient 

and the contact pressure, respectively. Slip can occur if 

qeq = .fn of the slip and the frictional stress qj coincide 

like that: 

    

qj

qeq

=
vj

veq

                                (11) 

where vj slip velocity in direction j, and  veq =  v1 + v2      

is the magnitude of the slip velocity. In friction 

formulation with Lagrange multiplier, tangential behavior 

model, Lagrange multipliers are used to enforce exact 

sticking conditions. The rate of virtual work with a 

constraint term enforced with Lagrange multipliers can be 

written for a contact surface. For the stick condition, 

where k0 and j are a reference stiffness internally 

selected by ABAQUS and a tangential slip in direction j, 

respectively: 

dδπc =  (k0δujduj + δujdq
j

s

+ k0δq
j
duj + τjdδuj)dS 

(12)  

 

for the slip condition, where nj and nk are the normalized 

slip directions, t is the time step, and is the δjk Kronecker 

delta. The slip/ stick status of an element is updated in 

ABAQUS as follows: if an element is currently in the 

stick condition and satisfies, then it is updated to the slip 

condition. If an element is currently in the slip condition 

and satisfies at the end of the iteration, then it is updated 

to the stick condition. 

3-2 formulation of regularized friction law 

Another possibility to formulate tangential constitutive 

equations in the contact interface is given by a 

regularization of the stick-slip behavior. Such a 

formulation is used to avoid the non-differentiability 

of Coulomb’s law at the onset of sliding.  

The interface relative displacement increment may be 

represented by means of additive decomposition 

∆u = ∆un . n  + ∆ut . t  

∆ut = ∆ue + ∆us                                 (13) 

The elastic part is given: 

∆fn = Kn . ∆un  

∆q = Kt . ∆ut                          (14) 

where Δfn and Δq are the normal and tangential increment 

components of traction applied of contact area, And   

∆u = v . ∆t is the relative total increment displacement, 

with normal component  ∆un = v n. ∆t and ∆ui. ti = ∆u −

∆un. n , i=1,2  in local basis < n, t1, t2 > . 

Relative velocity between the counter (slave) bodies to 

the main (master) body   v = v2 − v1 

The contact stress vector f acting on the main body 

orthogonally splits into the normal traction vector fn and 

the tangential traction vector q 

f = fn
   + 𝑞  = −fn. n + q.t 

fn =  n. f n =  n⨂n f = −fn. n                                  (15)

  

q = f − fn =  I − n⨂n f = q. t  

with tf = 
q

 q 
. 

 

The elastic relations are given by: 

    q = −Kt . v t
e  

and    fn
 = −Kn . v n

e  

where Kn, Kt are normal and tangential stiffness in 

adherence at contact surface. 
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Figure 3: Elastic friction contact for active loading surface and limit 

surface 

 

Interface slipping initiates when loading of the  

tangential stress, for an elastic friction contact problem 

(Figure 3), the sliding rules were associated with limit 

friction surface FL(q1, q2, qn) = 0. The transition from 

adherence condition to the slipping condition were 

generated by active loading surface Fi , moving inside the 

interior domain bounded by limit surface FL and given 

respectively by this equations : 

Fi q, α, r = q
e
− μ. fn. ri      (11) 

with   

q
e

=  (q
x
− αx)2 + (q

y
− αy)2

 

where qe is the equivalent relative tangential 

traction αx and αy are locates the centre of the surface in 

the traction space. The stress  states  corresponding to  the  

interior  of  the  yield surface correspond  to  elastic  

response, where 0 ≤ r ≤ 1  is  the size of the slipping 

condition for active loading surface (Figure 4). 

 

Figure 4: Evolution rule of loading 

 

The evolution rule of active surface loading  ratio can 

be assumed that the sliding ratio  increases with sliding 

velocity ,the plastic sliding process be formulated as 

r = g r .  vs     for    vs ≠ 0   (12) 

where g(r) is a monotonically decreased function of 

fulfilling the following conditions 

 g = +∞      for   r = 0 

 g =0            for   r = 1         

(13) 

 g<0            for   r > 1   

Let the function g(r) satisfying Eq. (13) be simply 

given by 

g r = −u. cot⁡(
π

2
r)       (14) 

Analytically integrated in the case of a monotonic 

sliding process as: 

r =
π

2
cos−1  cos  

π

2
r0 exp  −

π

2
u  us − u0

s               (15) 

where us =   vs dt is the accumulated plastic sliding 

displacement, and r0  and u0
s are the initial values of r and 

us ,respectively. The relationships of contact traction rate 

and sliding velocity is based on the elasto-plastic theory, 

we assume the following sliding flow rule. 

 

vi
s = λ

∂F

∂qi

= λ. t
      

(16) 

with  tf = 1  , where  is a positive proportionality 

factor. 

Let us assume the actual slipping surface with 

isotropic cinematic hardening describes similar way as 

incremental in the theory of multi surface plasticity given 

by equation (11), and the consistence condition leads to 

 
∂F

∂ q 
t. q =

∂F

∂ N 
n. N + 𝑅 𝑖𝐹    (18) 

 

dF =
∂F

∂q1
dq1 +

∂F

∂q2
dq2 +

∂F

∂R𝑖
dR𝑖   (19)

 

 
∂F

∂q i
=

q i

qeq
= ni      (20) 
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Substituting this equations give the proportionality 

factor λ derived as follows: 

 



∂F

∂ qe  
t.q −f𝑛.R𝑖−fn 

μ.U R𝑖 
       (21) 

 

 
Figure 5 : Relationship traction versus tangential displacement 

 

The  integration  procedure  under  consideration,  

falls  within  the  category  of  return  mapping  

algorithms  and  follows  in  a  straightforward  manner  

from  the  theory  of  operator  splitting  applied  to  

elasto-plastic  type  of  constitutive  relations: 

 

1 – Elastic predictor computation 

 𝑞
𝑒
𝑡𝑟 

𝑛+1
=  𝑞

𝑒
 
𝑛

+ 𝐾𝑡. ∆𝑢 

2 – Verification of slip /stick condition 

If    𝑞
𝑒
𝑡𝑟 

𝑛+1
≤ 𝑟𝑛   sticking occurs, otherwise slipping 

occurs. Slip corrector is given by:   

𝑞
𝑛+1

= 𝑞
𝑛+1
𝑡𝑟 − 𝐾𝑡. λ

∂F

∂q
 

4. Result of finite element model  

In order to validate the model, an application on the 

case of a sphere-plane contact, the schematic diagram of 

the contact between a deformable block and a deformable 

hemisphere of a radius R, under combined normal and 

tangential loads. The loading process is described as 

follows: First, an initial normal preload N is applied to the 

top of sphere and leads to an initial interference, a 

tangential force Q is added to the top of sphere keeping 

the interference constant, study non-linear FE code 

ABAQUS is used to analyze stress distributions with a 

quasi-static explicit scheme. The finite element model 

used in simulations is shown in figure 6 .The radius of the 

sphere is 10 mm, with elastic material property of steel 

with Young’s modulus (E = 210 kN/mm
2
), Poisson’s ratio 

(ν = 0.3). 

 

 
Figure 6 : FEM of an elastic sphere in contact with a elastic block under 

combined normal and tangential loading 
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Figure 7 : a) Relationship tangential vs. displacement. b)  Shear traction 

c) Pressure distribution  

 

A finite element analysis  program,  is capable of 

implementing  an  arbitrary friction constitutive  equation  

via  user-subroutines VFRIC,  implemented  in ABAQUS. 

The curves for shear stress and load displacement given in 

figure 7 produces by using the present model were the 

same as given found in work of Nelias [3]. 

3. Conclusion 

A constitutive model for the description of friction 

phenomena is formulated by incorporating the new 

approach model with multi-surface concept, and the 

following improvements are attained by the present model 

like that continuity and differentiation equation between 

normal and tangential force. 
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