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Abstract:  
 

An analytical study to predict the behavior of FGM Nano-plates supported by Pasternak elastic foundations based on a theory of 

hyperbolic shear strain. Nonlocal elasticity theory is used to introduce the effect of small scale. The influence of the parameters of the 

geometry, the foundation stiffness, and the material property are presented. Hence it is unnecessary to use shear correction factors. The 

governing equations are derived from the principle of virtual work. The free vibration solutions are finally presented for the nonlocal 

higher order plate models. The numerical results obtained in the present study for several examples are presented and compared to other 

models available in the literature. 
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1. Introduction  

 

Functionally graded materials are a new type of com-

posite structures that are of great interest in the design, 

use, and manufacture of engineering. Functionally 

graded structures allowed the material properties to be 

graded continuously through the thickness and to avoid 

abrupt changes in stress and displacement distributions. 

Functional materials (FGM) are classified as new com-

posite materials widely used in the aerospace, nuclear, 

civil, automotive, optical, biomechanical, electronic, 

chemical, mechanical and shipbuilding industries. FGM 

has attracted the attention of several researchers in recent 

years such as [1-22], and these may have a number of 

advantages such as high resistance to temperature gradi-

ents, a significant reduction in residual and thermal 

stresses and resistance high wear. In this work using a 

high order shear deformation theory to predict the vibra-

tional behavior of simply supported nanoplates (SS) and 

the results of nondimensional frequencies are in excellent 

agreement with literature. 

 

2. Mathematical formulation 

 

By using the non-local elasticity theory, it is assumed 

that the stress tensor at a point depends on the strain ten-

sor at all the points of the continuous medium; the non-

local constitutive relationships of a Hookean nano-

material can be represented by the following differential 

constitutive relationships [23]: 

 

(1 − 𝜇2)𝜎𝑖𝑗
𝑁𝐿 = 𝜎𝑖𝑗

𝐿                                                        (1) 

 

with µ = e0.a is the nonlocal parameter represents the 

small-scale effect.  

The nonlocal constitutive equations of an FGM non-

local plate can be written as [23]: 
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where: a is an internal characteristic length; e0  a          

constant; (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 , 𝜏𝑦𝑧 , 𝜏𝑦𝑥) and (ɛ𝑥, ɛ𝑦 , 𝛾𝑥𝑦 , 𝛾𝑦𝑧, 𝛾𝑦𝑥) 

are the stress and strain components, respectively. The 

elastic constants Qij in terms of Young’s modulus 𝐸 and 

Poison’s ratio  are: 

 

𝑄11(𝑧) = 𝑄22(𝑧) =
𝐸(𝑧)

1 − 𝜈2
; 

𝑄12(𝑧) = 𝑄21(𝑧) =
𝜈𝐸(𝑧)

1 − 𝜈2
 

𝑄44(𝑧) = 𝑄55(𝑧) = 𝑄66(𝑧) =
𝐸(𝑧)

2(1 + 𝜈)
 

 

 
 

Figure 1. The geometry of the FGM plate resting on elastic foundations [23]. 

 

Young’s modulus (E) and material density (ρ)        

equations of the FG plate can be expressed by the Power- 

law distribution as:  

 

{
 

 𝐸(𝑧) = (𝐸𝐶 − 𝐸𝑚) (
𝑧

ℎ
+

1

2
)
𝑝

𝐸𝑚

𝜌(𝑧) = (𝜌𝐶 − 𝜌𝑚) (
𝑧

ℎ
+

1

2
)
𝑝

𝜌𝑚

                                          (3) 

 

where: 

Ec  and  Em are  the  corresponding   properties   of   the   

ceramic and metal, respectively. 

c and m are the Material density of the ceramic and 

metal, respectively. 

The displacement field of the present model can be 

given as: 
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           (4) 

 

f (z) is defined by [24]: 

 

f (z) = 
ℎ∙sinh (10∙

𝑧

ℎ
)

10∙cos (5)
−

ℎ

100
− 𝑧                                  (5) 

 

where u0, v0, wb, ws are four unknown displacements of 

the mid-plane of the plate, f (z) denotes shape function 

representing the variation of the transverse shear strains 

and stresses within the thickness. 

The strain field is calculated by: 
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where: 
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                (7) 

 

By using the principle of virtual displacements. The 

principle of virtual work is presented in the form: 

∫ ∫ [𝜎𝑋𝛿𝜀𝑋 + 𝜎𝑦𝛿𝜀𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧]𝛺

ℎ/2

−ℎ/2
𝑑𝛺𝑑𝑧 − ∫ ∫ [𝜌�̈�𝛿𝑈 + �̈�𝛿𝑉 + �̈�𝛿𝑊]

𝛺

ℎ/2

−ℎ/2
𝑑𝛺𝑑𝑧                 (8) 

 

Using the integral by part and after simplification, the 

equilibrium   equations  associated  with  the  present 

formulation for the nonlocal plate:

 

{
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     (9) 

 

where: 

(𝑁𝑥, 𝑁𝑦 , 𝑁𝑥𝑦) = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)𝑑𝑧
ℎ/2

−ℎ/2

 

(𝑀𝑥
𝑏 ,𝑀𝑦

𝑏 , 𝑀𝑥𝑦
𝑏 ) = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)𝑧𝑑𝑧

ℎ/2

−ℎ/2

 

(𝑀𝑥
𝑠, 𝑀𝑦

𝑠, 𝑀𝑥𝑦
𝑠 ) = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)𝑓𝑑𝑧

ℎ/2

−ℎ/2

 

(𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 ) = ∫ (𝜏𝑥𝑧 , 𝜏𝑦𝑧)𝑔𝑑𝑧
ℎ/2

−ℎ/2

 

 

3. Analytical solutions for vibration problems non-

local plates 

 

The solution that checks the equation of equilibrium 

is in form 

 

{

𝑢𝑜
𝜈𝑜
𝑤𝑏
𝑤𝑠

} =

{
 
 

 
 𝑈 𝑐𝑜𝑠( 𝜆𝑥) 𝑠𝑖𝑛( 𝛽𝑦). 𝑒

𝑖𝜔𝑡

𝑉 𝑠𝑖𝑛( 𝜆𝑥) 𝑐𝑜𝑠( 𝛽𝑦). 𝑒𝑖𝜔𝑡

𝑊𝑏 𝑠𝑖𝑛( 𝜆𝑥) 𝑠𝑖𝑛( 𝛽𝑦). 𝑒
𝑖𝜔𝑡

𝑊𝑠 𝑠𝑖𝑛( 𝜆𝑥) 𝑠𝑖𝑛( 𝛽𝑦). 𝑒
𝑖𝜔𝑡
}
 
 

 
 

                   (10) 

 

4. Numerical results and discussion 

 

The material properties used in the present study are 

as follows [25]:  

 

Em = 70 GPa, m = 2 707 kg/m3 for aluminum 

Ec = 380 GPa, c = 3 800 kg/m3 for alumina 

c =m = 0.3 kg/m3 for aluminum 

where: 

E,  and  are respectively Young’s modulus, Poisson’s 

ratio, and plate density.  

 

The parameters of the foundation are given  in  the  

dimensionless form as: 
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 𝐾𝑤 =
𝑘𝑤𝑎

4

𝐷𝑐
 ; 𝐾𝑝 =

𝑘𝑝𝑎
2

𝐷𝑐
 ;  

𝐷𝑐 =
𝐸ℎ3

12(1−𝜈2)
  and �̄� = 𝜔𝑎2 (

𝜌𝑐ℎ
3

𝐷𝑐
)
0.5

 

 

with Dc the Flexural Rigidity and �̅� the non-dimensional 

frequency 

The Winkler stiffness constant  kw is defined by the 

stiffness of the linear springs. Distinct from the Winkler 

model, there is an additional shear layer in the Pasternak 

model, which is characterized by the Pasternak stiffness 

constants kp. The influence of the rigidity of the founda-

tion is  presented  in  tabular  form  and  graphically  by 

taking the two parameters of the foundation different 

from zero (kw ≠ 0 and kp ≠ 0). 

 

Table 1: 

Comparison of free vibration �̅�  of a simply supported homogeneous 

square nanoplate (𝑎 ℎ⁄ = 1,𝑃 = 0, 𝜇 = 0,5 , 𝑘𝑝 = 10) resting on 

Pasternak’s elastic foundations. 

𝒎 𝒏 𝒂/𝒉 𝒌𝒘 Sobhy [26] Present 

1 1 

100 
100 2.6551 2.6553 

500 3.3400 3.3401 

10 
200 2.7842 2.7988 

1000 3.9806 3.9901 

2 1 

100 
100 5.5718 5.5731 

500 5.9287 5.9300 

10 
200 5.3051 5.4050 

1000 6.0085 6.0947 

2 2 

100 
100 8.5405 8.5441 

500 8.7775 8.7810 

10 
200 7.7311 8.6039 

1000 8.2237 9.0683 

(m, n) represents the vibration modes 

 

0 2 4 6 8 10
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w

P
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Figure2.The effect of 𝑃 on the non-dimensional fundamental          

frequency of (SSSS) square nanoplate resting on elastic foundations. 

𝑎 ℎ⁄ = 100, 𝑘𝑤 = 100, 𝑘𝑝 = 10 
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w
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Figure3.The effect of thickness ratio a/h on the non-dimensional 

fundamental frequency of (SSSS) square nanoplate resting on elastic 

foundations. 𝜇 = 0.5, 𝑘𝑤 = 100, 𝑘𝑝 = 10 

 

The numerical comparison of this model and other 

formulation is presented in table 1. The numerical com-

parison of the present  model  and  other  formulation  

obtained by Sobhy [23] is presented in table 1.  

The results of the dimensionless frequencies obtained 

by the present formulation for homogeneous isotropic 

plates (P = 0) resting on elastic foundations of Pasternak 

are identical to that of Sobhy [23]. 

Figure 2 shows the variation  of  the  fundamental 

frequencies with the exponent of the power law for an 

FGM square nanoplate. It can be observed that the non-

dimensional frequency decreases when 𝑃 increases. 

Figure 3 shows the variation of the fundamental fre-

quencies as a function of thickness ratio a/h for an FGM 

square  nanoplate.  We  can  observe  that  the                 

non-dimensional frequency increases when the ratio a/h 



CHEIKH A.  

 

 

To cite this article: CHIKH Abdelbaki, Dynamic Behavior Analysis of Functionally Graded Nanoplates Based On Elastic Foundations, Nature & 
Technology Journal, 11 (2) (2019): 07-11. https://www.asjp.cerist.dz/en/Articles/47 

 

11 

increases in the interval zero to the twenty and almost 

constant from a/h = 20. 

 

3. Conclusions 

 

In this study, a nonlocal elasticity model for the free 

vibration of FGM nanoplates on elastic foundations was 

developed using a high order shear deformation theory. 

The  results  obtained  show  that  the  frequency values 

decrease for each increase of (P) and the frequencies of 

the plates increase considerably if passing from a thick 

plate to a thin plate. 
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